GPL-TOX Profile

GPL-TOX Profile logo in all white -MosaicDX

Assess Environmental Toxic Burden

Our daily lives expose us to hundreds of toxic chemicals, from various sources such as food, pharmaceuticals, household products and environmental pollution. This exposure has increased due to industrialization, overdevelopment, and chemical-intensive agriculture. Unfortunately, exposure to these toxicants can lead to a wide range of health risks, from minor skin irritation to life-threatening illnesses.

The GPL-TOX Profile is a comprehensive assessment of exposure to environmental pollutants. This urine-based assay screens for 173 toxicants through 18 metabolites, including Tiglyglycine, a key marker for mitochondrial damage often associated with chronic toxin exposure. By utilizing advanced mass spectrometry (LC/MS), the GPL-TOX Profile is able to detect lower levels of certain genetic, mitochondrial, and toxic chemical markers that conventional mass spectrometry may miss.

Urine
Turnaround Time: Currently Unavailable, Please Contact Customer Service for Details.

Turnaround times are estimates. Detailed order tracking is available in the MosaicDX Portal.

GPL-TOX Profile
* Available in English, Spanish, German, Portuguese, Japanese, French, Polish, Hungarian
GPL-TOX Logo with blue text that reads "GPL-TOX" and grey text that reads "Profile" - MosaixDX

What Patients Might Benefit From the GPL-TOX Profile

Exposure to these environmentally ubiquitous compounds can cause endocrine and metabolic disruptions and have been associated with many diseases and conditions.

  • Autism
  • Behavioral Issues
  • Cardiovascular Disease
  • Certain types of cancer
  • Early or delayed puberty
  • Endocrine Disruption
  • Fatigue
  • Immune Suppression
  • Infertility
  • Kidney Disease
  • Mitochondrial Disorder
  • Neurological Problems
  • Obesity
  • Thyroid and Adrenal Dysfunction

Details

Why Test for Environmental Toxins?

Exposure to environmental toxicants has been linked to numerous health problems. Identifying exposure to unknown chemicals in daily products, foods, and the environment is critical for patients experiencing chronic inflammatory symptoms, resistance to weight loss, and signs of excessive total toxic load.

The GPL-TOX Profile is specifically designed to detect the presence of various toxic chemicals that can cause or contribute to chronic diseases. Toxicants can cause acute or chronic toxic overload when they are absorbed, inhaled, or ingested by the human body. These substances can be produced within the body or found in the environment as endocrine disruptors or cancer-causing chemicals.

By screening for environmental exposure to toxicants, the GPL-TOX Profile can help healthcare providers identify the underlying causes of toxicity and develop an effective plan for detoxification and healing. The profile also includes Tiglylglycine (TG), a marker for mitochondrial disorders that can result from mutations in mitochondrial DNA caused by toxic chemical exposure, infections, inflammation, and nutritional deficiencies.

Learn More About the GPL-TOX Profile: Explore FAQs

Analytes

The GPL-TOX Profile is a comprehensive test for screening exposure to 173 environmental toxicants through the analysis of 18 metabolites.

Below is a list of all the metabolites included in the test, along with a brief description of each and a description of their parent compound.


  • Description: 2-Hydroxyisobutyric acid is formed endogenously as a product of branched-chain amino acid degradation and ketogenesis. This compound is also the major metabolite of gasoline octane enhancers such as MTBE and ETBE. Elevated levels indicate environmental exposure and very high values have been reported in genetic disorders.
  • Parent: MTBE and ETBE are gasoline additives used to improve octane ratings. Exposure to these compounds is most likely due to groundwater contamination, and inhalation or skin exposure to gasoline or its vapors and exhaust fumes. MTBE has been demonstrated to cause hepatic, kidney, and central nervous system toxicity, peripheral neurotoxicity, and cancer in animals. Since the metabolites of these compounds are the same, ETBE may be similarly toxic.

  • Description: MEP from diethyl phthalate is the most abundant phthalate metabolite found in urine. Diethyl phthalate is used in plastic products. Elevated values indicate exposure from various possible sources. Elimination of phthalates may be accelerated by sauna treatment.
  • Parent: Phthalates, perhaps the most widespread group of toxic chemicals found in our environment. Phthalates are commonly found in aftershave lotions, aspirin, cosmetics, detergents, foods microwaved with plastic covers, oral pharmaceutical drugs, intravenous products prepared in plastic bags, hair sprays, insecticides, insect repellents, nail polish, nail polish remover, skincare products, adhesives, explosives, lacquer, janitorial products, perfumes, paper coatings, printing inks, safety glass, and varnishes. Phthalates have been implicated in reproductive damage, depressed leukocyte function, and cancer. Phthalates have also been found to impede blood coagulation, lower testosterone, and alter sexual development in children. Low levels of phthalates can feminize the male brain of the fetus, while high levels can hyper-masculinize the developing male brain.

  • Description: These are metabolites of xylenes, solvents found in paints, lacquers, cleaning agents, pesticides, and gasoline. Exposure to xylenes generates methylhippuric acid isomers. Avoid/reduce exposure to these substances.
  • Parent: Xylenes (dimethylbenzenes) are solvents found not only in common products such as paints, lacquers, pesticides, cleaning fluids, fuel and exhaust fumes, but also in perfumes and insect repellents. Xylenes are oxidized in the liver and bound to glycine before eliminated in urine. High xylene levels may be due to the use of certain perfumes and insect repellents. High exposures to xylene create an increase in oxidative stress, causing symptoms such as nausea, vomiting, dizziness, central nervous system depression, and death. Occupational exposure is often found in pathology laboratories where xylene is used for tissue processing.

  • Description: Exposure to environmental styrene may slightly increase phenylglyoxylic and mandelic acid. Reduce exposure by eliminating the use of plastic and styrofoam containers for cooking, reheating, eating or drinking. Elimination of styrene can be accelerated by supplementing with glutathione and N-acetyl cysteine (NAC).
  • Parent: Styrene/Ethylbenzene is used in the manufacturing of plastics, in building materials, and is found in car exhaust fumes. Polystyrene and its copolymers are widely used as food packaging materials. The ability of styrene monomer to leach from polystyrene packaging to food has been reported. Occupational exposure due to inhalation of large amounts of styrene adversely impacts the central nervous system, causes concentration problems, muscle weakness, tiredness, and nausea, and irritates the mucous membranes of the eyes, nose, and throat.

  • Description: NAP is a metabolite of benzene. Benzene is a solvent that is widespread in the environment. It is found in cigarette smoke and gasoline, and is a byproduct of all types of combustion, including motor vehicle exhaust. Treatment consists of removing sources of exposure.
  • Parent: Benzene is an organic solvent that is widespread in the environment. Benzene is a by-product of all sources of combustion, including cigarette smoke, and is released by outgassing from synthetic materials, and is a pollutant released by numerous industrial processes. Benzene is an extremely toxic chemical that is mutagenic and carcinogenic. High exposures to benzene cause symptoms of nausea, vomiting, dizziness, lack of coordination, central nervous system depression, and death. It can also cause hematological abnormalities.

  • Description: NACE is a metabolite of acrylonitrile, which is used in the production of acrylic fibers, resins, and rubber. Acrylonitrile is metabolized by the cytochrome P450s and then conjugated to glutathione. Supplementation with glutathione should assist in the detoxification of acrylonitrile.
  • Parent: Acrylonitrile is a colorless liquid with a pungent odor. It is used in the production of acrylic fibers, resins, and rubber. Use of any of these products could lead to exposure to acrylonitrile. Smoking tobacco and cigarettes is another potential exposure. Exposure to acrylonitrile can lead to headaches, nausea, dizziness, fatigue, and chest pains. The European Union has classified acrylonitrile as a carcinogen.

  • Description: Perchlorate is used in the production of rocket fuel, missiles, fireworks, flares, explosives, fertilizers, and bleach. Studies show that perchlorate is often found to contaminate water supplies and food sources. It can disrupt the thyroid’s ability to produce hormones.  The EPA has also labeled perchlorate a likely human carcinogen. Patients that are high in perchlorate can use a reverse osmosis water treatment system to remove perchlorate.
  • Parent: Perchlorate is a chemical is used in the production of rocket fuel, missiles, fireworks, flares, explosives, fertilizers, and bleach. Studies show that perchlorate is often found in water supplies. Many food sources are also contaminated with perchlorate. Perchlorate can disrupt the thyroid’s ability to produce hormones. The EPA has also labeled perchlorate a likely human carcinogen. Patients that are high in perchlorate can use a reverse osmosis water treatment system to remove the chemical from their water supply.

  • Description: This is a metabolite of the organophosphate flame retardant triphenyl phosphate (TPHP), which is used in plastics, electronic equipment, nail polish, and resins.  TPHP can cause endocrine disruption. Studies have also linked TPHP to reproductive and developmental problems.
  • Parent: Diphenyl Phosphate is a metabolite of the organophosphate flame retardant triphenyl phosphate (TPHP), which is used in plastics, electronic equipment, nail polish, and resins. TPHP can cause endocrine disruption. Studies have also linked TPHP to reproductive and developmental problems.

  • Description: HEMA is a metabolite of ethylene oxide, which is used in the production of agrochemicals, detergents, pharmaceuticals, and personal care products.  Chronic exposure to ethylene oxide has been determined to be mutagenic to humans.    HEMA is also a metabolite of vinyl chloride and halopropane, which are used in many commercial chemical processes such as foam glueing, dry cleaning, and in the production of solvents.  Supplementation with glutathione should assist in the detoxification process of these chemicals.
  • Parents: Ethylene oxide, Vinyl chloride, Halopropane
  • Ethylene oxide is used in many different industries including agrochemicals detergents, pharmaceuticals, and personal care products. Ethylene oxide is also used as a sterilizing agent on rubber, plastics, and electronics. Chronic exposure to ethylene oxide has been determined to be mutagenic to humans. Multiple agencies have reported it as a carcinogen. Studies of people exposed to ethylene oxide show an increased incidence of breast cancer and leukemia. Caution is needed with ethylene oxide because it is odorless at toxic levels.
  • Vinyl chloride is an intermediate in the synthesis of several commercial chemicals, including polyvinyl chloride (PVC). Exposure to vinyl chloride may cause central nervous system depression, nausea, headache, dizziness, liver damage, degenerative bone changes, thrombocytopenia, enlargement of the spleen, and death.

  • Description: NAPR is a metabolite of 1-bromopropane. Chronic exposure can lead to decreased cognitive function and impairment of the central nervous system. Acute exposure can lead to headaches.
  • Parent: 1-Bromopropane is an organic solvent used for metal cleaning, foam gluing, and dry cleaning. Studies have shown that 1-BP is a neurotoxin as well as a reproductive toxin. Research indicates that exposure to 1-BP can cause sensory and motor deficits. Chronic exposure can lead to decreased cognitive function and impairment of the central nervous system. Acute exposure can lead to headaches.

  • Description: NAHP is a metabolite of propylene oxide which is used in the production of plastics and as a fumigant. It is also used in the preparation of lubricants, surfactants, and oil demulsifiers and as a food additive, an herbicide, a microbicide, an insecticide, a fungicide, and a miticide. Propylene oxide is a probable human carcinogen.
  • Parent: Propylene oxide is a chemical is used in the production of plastics and is used as a fumigant. Propylene oxide is used to make polyester resins for textile and construction industries.  It is also used in the preparation of lubricants, surfactants, and oil demulsifiers. It has also been used as a food additive, an herbicide, a microbicide, an insecticide, a fungicide, and a miticide. Propylene oxide is a probable human carcinogen.

  • Description: NAE is a metabolite of acrylamide, which is detoxified through a two-step process. First acrylamide is metabolized by the cytochrome P450s. Second it is conjugated to glutathione in order to make it more water soluble. Acrylamide is used in many industrial processes such as plastics, food packaging, cosmetics, nail polish, dyes, and treatment of drinking water. High levels of acrylamide can elevate a patient’s risk of cancer and cause neurological damage. Supplementation with glutathione can assist in the elimination of this compound.
  • Parent: Acrylamide can polymerize to form polyacrylamide. Polyacrylamide is used in many industrial processes such as plastics, food packaging, cosmetics, nail polish, dyes, and treatment of drinking water. Food and cigarette smoke are also two major sources of exposure. Acrylamide has been found in foods like potato chips, French fries, and many others such as asparagus, potatoes, legumes, nuts, seeds, beef, eggs, and fish. Asparagine, which is found in these foods can produce acrylamide when cooked at high temperatures in the presence of sugars. High levels of acrylamide can elevate a patient’s risk of cancer. In addition, acrylamide is known to cause neurological damage.

  • Description: NADB is a metabolite of 1,3 butadiene, which is evident of exposure to synthetic rubber such as tires. 1,3 butadiene is a known carcinogen and has been linked to increased risk of cardiovascular disease. Individuals that come into contact with rubber, such as car tires, could absorb 1,3 butadiene through the skin.
  • Parent: 1,3 butadiene is a chemical made from the processing of petroleum. It is often a colorless gas with a mild gasoline-like odor. Most of this chemical is used in the production of synthetic rubber. 1,3 Butadiene is a known carcinogen and has been linked to an increased risk of cardiovascular disease. Individuals that come into contact with rubber, such as car tires, could absorb 1,3 Butadiene through the skin. The increased use of old tires in the production of crumb rubber playgrounds and athletic fields is quite troubling because children and athletes may be exposed to toxic chemicals this way.

  • Description: DMP and DEP are major metabolites of many organophosphate pesticides. Reduce exposure by eating organic foods and avoiding use of pesticides in your home or garden. Living near agricultural areas or golf courses and areas regularly sprayed with pesticides will increase exposure. Elimination of organophosphates can be accelerated by sauna treatment.
  • Parent: Organophosphates are one of the most toxic groups of substances used throughout the world. They are often used as biochemical weapons and terrorist agents but are most commonly used in pesticide formulations. Organophospates are inhibitors of cholinesterase enzymes, leading to overstimulation of nerve cells, causing sweating, salivation, diarrhea, abnormal behavior, including aggression and depression. Children exposed to organophosphates have more than twice the risk of developing pervasive developmental disorder (PDD), an autism spectrum disorder. A study done in the San Francisco Bay area found that in California agricultural areas, children born to mothers living within 500 meters of fields where organochlorine pesticides were used were more than 6 times more likely to develop autism than children whose mothers did not live near such fields. ASD risk increased with the poundage of organochlorines applied and decreased with distance from field sites. Maternal organophosphate exposure has been associated with various adverse outcomes including having shorter pregnancies and children with impaired reflexes.

  • Description: DMP and DEP are major metabolites of many organophosphate pesticides. Reduce exposure by eating organic foods and avoiding use of pesticides in your home or garden. Living near agricultural areas or golf courses and areas regularly sprayed with pesticides will increase exposure. Elimination of organophosphates can be accelerated by sauna treatment.
  • Parent: Organophosphates are one of the most toxic groups of substances used throughout the world. They are often used as biochemical weapons and terrorist agents but are most commonly used in pesticide formulations. Organophospates are inhibitors of cholinesterase enzymes, leading to overstimulation of nerve cells, causing sweating, salivation, diarrhea, abnormal behavior, including aggression and depression. Children exposed to organophosphates have more than twice the risk of developing pervasive developmental disorder (PDD), an autism spectrum disorder. A study done in the San Francisco Bay area found that in California agricultural areas, children born to mothers living within 500 meters of fields where organochlorine pesticides were used were more than 6 times more likely to develop autism than children whose mothers did not live near such fields. ASD risk increased with the poundage of organochlorines applied and decreased with distance from field sites. Maternal organophosphate exposure has been associated with various adverse outcomes including having shorter pregnancies and children with impaired reflexes.

  • Description: 2,4-D was an ingredient in Agent Orange, and is most commonly used in agriculture of genetically modified foods, and as a weed killer for lawns. Reduce exposure by eating organic foods and avoiding use of pesticides in your home or garden.
  • Parent: 2,4-Dichlorophenoxyacetic Acid (2-,4-D) is a very common herbicide that was a part of Agent Orange, used by the United States during the Vietnam War to increase visibility for warplanes, by destroying plant undergrowth and crops. It is most commonly used in agriculture on genetically modified foods, and as a weed killer for lawns. Exposure to 2, 4-D via skin or oral ingestion is associated with neuritis, weakness, nausea, abdominal pain, headache, dizziness, peripheral neuropathy, stupor, seizures, brain damage, and impaired reflexes. 2, 4-D is a known endocrine disruptor and can block hormone distribution and cause glandular breakdown.

  • Description: 3-HPMA is a metabolite of acrolein. Acrolein is commonly used as an herbicide to control weeds and algae in irrigation canals. Humans are exposed to acrolein via oral (fried foods, alcoholic beverages, and water), respiratory (cigarette smoke and automobile exhaust), and dermal routes. On the cellular level, acrolein exposure has diverse toxic effects, including DNA and protein adduction, oxidative stress, mitochondrial disruption, membrane damage, and immune dysfunction. N-acetylcysteine (NAC) or glutathione (GSH) supplementation is recommended as treatment.
  • Parent: Acrolein is commonly used as an herbicide to control submersed and floating weeds and algae in irrigation canals. Humans are exposed to acrolein via oral (fried foods, alcoholic beverages, and water), respiratory (cigarette smoke and automobile exhaust), and dermal routes. In addition, there is also endogenous generation (metabolism and lipid peroxidation) of acrolein. Acrolein has been suggested to play a role in several disease states including spinal cord injury, multiple sclerosis, Alzheimer’s disease, cardiovascular disease, diabetes mellitus, and neuro-, hepato-, and nephrotoxicity. On the cellular level, acrolein exposure has diverse toxic effects, including DNA and protein adduction, oxidative stress, mitochondrial disruption, membrane damage, and immune dysfunction.

  • Description: 3-Phenoxybenzoic acid is a metabolite of pyrethroid insecticides. Elimination can be accelerated by sauna treatment.
  • Parents: Pyrethroids – Including Permethrin, Cypermethrin, Cyhalothrins, Fenpropathrin, Deltamethrin, Trihalomethrin are widely used as insecticides. Exposure during pregnancy doubles the likelihood of Autism. Pyrethrins may affect neurological development, disrupt hormones, induce cancer, and suppress the immune system.

  • Description: TG is a marker for mitochondrial dysfunction. Mutations of mitochondria DNA may result from exposure to toxic chemicals, infections, inflammation, and nutritional deficiencies.
  • Parent: Tiglylglycine (TG),one of the most specific markers for mitochondrial disorders resulting from mutations of mitochondrial DNA. These mutations can result from exposure to toxic chemicals, infections, inflammation, and nutritional deficiencies. Mitochondria are important in all cells in the body, but are especially important to organs that utilize large amounts of energy, such as the muscles, heart, and brain. The mitochondria also have several other important functions in the cell, including steroid synthesis, calcium regulation, free radical production, and the induction of apoptosis or programmed cell death, all of which are involved in the pathogenesis of numerous disorders. The marker used in the GPL-TOX profile indicates mitochondrial dysfunction by monitoring a metabolite that is elevated in mitochondrial deficiency of cofactors such as NAD+, flavin-containing coenzymes, and Coenzyme Q10. Disorders associated with mitochondrial dysfunction include Autism, Parkinson’s disease, and cancer.

Sample Reports

The GPLTOX test report is a useful resource for practitioners who want to gain valuable insights into their patients potential exposure to environmental pollutants.

The test report lists all metabolites along with their parent compound while organizing into clinically useful categories including:

  • Industrial Toxicants
  • Organophosphate Insecticide Metabolites
  • Herbicides
  • Pyrethroid Insecticides
  • Markers for Mitochondria Function

Test Prep and Instructions

MosaicDX offers patient-friendly sample collection kits that simplify testing. Our kits include visual, step-by-step instructions for test preparation and sample collection, personalized shipping cards, and pediatric collection bags if needed. With MosaicDX, patients can easily collect samples for testing with confidence and accuracy.

How GPL-TOX Profile can remove barriers to healing, insights from Joseph Pizzorno, ND

“Assessing people for toxic exposure should be part of primary care. We shouldn’t wait for people to not respond to conventional therapies before starting to think about toxins.”  – Joseph Pizzorno, ND

OAT Organic Acids Test logo

Frequently Asked Questions

The ordering process for MosaicDX tests starts with your healthcare practitioner assessing your symptoms and recommending the most appropriate test.

Once a test has been recommended, collection kits can be conveniently ordered and delivered straight to your doorstep. If you already have a collection kit, you can register your test and begin the process at your convenience.

It is important to carefully follow the collection instructions and include all required information about yourself and your specimens when registering your test. When your specimens are collected, you can use the prepaid shipping materials provided in your kit to ship them to MosaicDX. Your results will be accessible online via the MosaicDX portal. We recommend scheduling an appointment with your healthcare practitioner to discuss your results and develop a plan for your healthcare

If you are located outside of the U.S., our customer service team can assist you in finding a distributor in your country. In countries where a distributor is not required, you can place an order through our international patient ordering site. Please note that all international shipping costs must be paid prior to shipping the kit.  

Patients with high toxic levels are at greater risk of concomitant exposure from all toxins. For patients with specific exposure history, practitioners can order individual panels or combine profiles to identify or more rapidly reduce or remove multiple sources of toxin exposure:

These test can all be done from one urine sample:

Glyphosate is a standalone test or an optional add-on to other urine tests such as the GPL-TOXMycoTOX, and Organic Acids Test.

Several substances measured by the GPL-TOX may come from various sources of exposure. The panel cannot determine the specific origin of the toxicant, but it can provide information on the most common sources. By collaborating with your healthcare provider, you can investigate and eliminate potential sources of exposure. 

Several substances measured by the GPL-TOX may come from various sources of exposure. The panel cannot determine the specific origin of the toxicant, but it can provide information on the most common sources. By collaborating with your healthcare provider, you can investigate and eliminate potential sources of exposure.

If you or a patient has had a GPL-TOX Profile and/or a Glyphosate Test run and found moderate-high levels of any compounds, there are things you can do to help your body eliminate the toxins and to prevent future exposures. The first steps to reducing the amount of toxins presently in the body are to switch to eating only organic food and drinking water that has common toxins, including pesticides filtered out. Most conventional food crops are exposed to larger and larger doses of pesticides and herbicides, and by switching to organic you will prevent exposure to hundreds of these toxicants. Many of these chemicals have also contaminated our water supplies. Installing a high-quality water filtration system in the home that eliminates them is important to do and there are several options available.  

The next step to avoiding future exposures is to change the products you use on a daily basis – from food and beverage containers to beauty and cleaning products. Instead of using plastic water bottles and food containers, switch to glass or metal. Never microwave food in plastic or styrofoam containers and do not drink hot beverages from plastic or styrofoam cups. Make sure your shampoo, soaps, lotions, and other beauty products are free of phthalates. Use cleaning products made from natural ingredients or make your own at home.  

To eliminate toxins from the body, we highly recommend exercise and the use of saunas, especially infrared sauna therapy to rid many chemicals through sweat. Infrared sauna is superior to conventional sauna because it reaches deeper into the body, increasing the circulation in the blood vessels, and causing the body to start to releasing many of the chemicals stored in body fat.  

There are two supplements that are particularly useful in helping the body detoxify. The first is glutathione, or its precursor N-acetyl cysteine. Glutathione is one of the most common molecules used by the body to eliminate toxic chemicals. If you are constantly exposed to toxicants your stores of glutathione could be depleted. The second supplement is vitamin B3 (niacin). Some may not enjoy the flushing that can happen when taking niacin, however, this flushing is from the blood vessels dilating, which is useful in the detoxification process.  If sensitive to the flushing, start with the lowest recommended dose and work up from there.

Yes, it is possible to conduct multiple urine tests using a single urine sample, provided that the volume requirement for each test is met. The urine collection container typically holds around 50 mL of urine. However, for timed and 24-hour urine tests, a specialized collection jug or bag is necessary. 

Different states have regulations that define the scope of practice for practitioners. It is the practitioner’s responsibility to abide by these rules. Check with your state board of health to determine any restrictions related to laboratory testing. Please note, Mosaic Diagnostics does not offer testing in New York. 

Once you have opened your account, you have the options of ordering kits to stock in your office or drop-ship kits directly to your patients through your MosaicDX portal.   

Watch our short tutorial videos on how to conveniently  

Already have a kit? Watch this video on how to place an order for your patient using a kit from your inventory.   

To ensure optimal results, it is recommended to ship urine specimens to the laboratory immediately after collection as they start degrading in quality soon after. In case immediate shipping is not possible, here are some guidelines for specimen stability: Urine samples can be stored in the refrigerator for up to 5 days, and for extended periods in the freezer. This applies to all urine tests performed at MosaicDX, except for the Kryptopyrrole test, for which urine must be frozen immediately and received within 24 hours of collection for accurate results. 

Please refer to your test’s specific Test Preparation and Instructions for more information regarding the potential effects of medications, foods, and supplements on this test. 

You make also consult your healthcare provider prior to making any changes to your medications.

Visit the payment information page for an overview of payment options and procedures along with insurance coverage overview.

NOTE: Insurance coverage for testing is based on several factors such as the type of procedure, diagnosis, and insurance policy guidelines. Patients are encouraged to contact their insurance company to check for coverage and to provide the procedure codes (CPT codes) and diagnostic codes (ICD-10 codes). The CPT codes can be found on the billing information page, while ICD-10 codes are provided by the practitioner.

Mosaic Diagnostics offers written interpretations within test reports and complimentary consultations with our clinical educators for qualified practitioners. To schedule a consultation, simply sign in to your MosaicDX account and book a consultation online. 

We encourage all patients to discuss results with your practitioner.

Our Resources tab also contains educational materials that you may find useful, we also offer MosaicEDGE workshops for qualified practitioners to better understand the fundamentals of lab testing.

Have a question? We've got answers.

Our team of experts can help you find exactly what you need. Contact us now and let's get started.

Clinical References