Detoxification

The Connection Between Chronic Inflammation and Disease

MattBlogPic.png

Welcome back to the GPL blog.  Today I wanted to talk about the link between inflammation and chronic disease.  The mission of The Great Plains Laboratory is to help those suffering from chronic diseases, and recent studies have shown that most chronic diseases are tied to inflammation.  In this blog post I am going to give a brief synopsis of some of the most common diseases associated with chronic inflammation and what tests we offer that give insight into how to treat these patients.    

Inflammation is a response from the body to assist in the elimination of pathogens and to repair tissue damage from trauma.  Inflammation is a healthy, natural response to cellular stress caused by stimuli perceived as a threat.  It signals the body to bring extra nutrition to sites that are damaged through injury or illness.  Without inflammation proper healing could not occur. While acute inflammation is critical to our well-being, chronic, long term inflammation is damaging to cells and linked to many diseases. Chronic inflammation occurs when the immune system believes there is a threat even when there is no immediate reason for this perceived threat. It is still unclear what causes chronic inflammation but lifestyle factors, genetic factors, and internal stressors have all been implicated.

Recent studies have demonstrated that inflammation is an underlying contributor to most chronic diseases.  Some of the most common of these include cancer, rheumatoid arthritis, Crohn’s disease, depression, stroke, heart disease, and diabetes.   Since inflammation is involved with so many chronic diseases, detecting inflammation is an important aspect to managing patient symptoms. Better still, if the underlying causes of inflammation such as Candida, bacteria, mold, food sensitivities, and environmental toxins are determined, the disease process may be reversed.

Phospholipase A2

Picture1.png

We developed the Phospholipase A2 (PLA2) Activity Test to determine if a specific type of inflammation is underlying the patient’s condition.  PLA2 is an enzyme that activates during bacterial infection, cellular trauma, and periods of oxidative stress.  PLA2 activates a cascade of secondary messengers that can lead to cycles of inflammation that can self-perpetuate.  PLA2 metabolizes membrane glycerophospholipids to free arachidonic acid (AA), which is a precursor for the inflammatory signaling molecules, prostaglandins and leukotrienes (Figure 1).  PLA2 is expressed in neuronal tissue and is involved in the degranulation process that releases neurotransmitters from neurons. Research efforts have focused on the role that derangement of normal PLA2 activity plays in the etiology of many chronic illnesses. The specific roles, interactions, and interdependencies of PLA2 have been a major area of interest as it relates to chronic inflammatory conditions, cardiovascular disease, and cancer.  

Measurement of PLA2 is emerging as an important tool for evaluating the chance of cardiovascular disease (CVD), including future stroke, myocardial infarction, heart failure, and other vascular events. Lp-PLA2 appears to be more specific than hsCRP for CVD risk and may also have a pivotal role as a mediator of cardiovascular pathology. In atherosclerosis, PLA2 not only activates macrophages and formation of foam cells, but it also hydrolyzes LDL and HDL, spawning increased numbers of pro-atherogenic small LDL particles, and impairing anti-atherogenic HDL. PLA2 activity may even precipitate bleeding from atherosclerotic plaques.

Picture2.png

Because PLA2 is a relatively small enzyme (about 14 KD), it is able to be excreted in urine.  Our enzymatic assay determines how active PLA2 is in the body, which is mediated by phosphorylation of the enzyme.  We have assessed that an activity level of PLA2 activity/creatinine of over 1 results from elevated activity and could be harmful. 

CDP-choline

The literature indicates that Cytidine 5-diphospho-choline (CDP-choline or citicoline) attenuates PLA2 through a number of mechanisms. Most notably it repairs membrane potential and reduces lipid peroxidation. These processes essentially prevent new PLA2 from forming by stopping the cycle of inflammation.   Individuals with methylation pathway SNPs may be more susceptible to deficiencies in CDP-choline because it is difficult for them to make phosphoethanolamine, a CDP-choline precursor. Some individuals may have further deficiencies in citicholine due to mutations in their PEMT gene which converts phosphoethanolamine into CDP-choline. Fortunately, this compound is available as a nutritional supplement from New Beginnings Nutritionals and has been used at doses ranging from 500-4000 mg per day in the treatment of patients with a variety of disorders including Parkinson's disease, memory disorders, vascular cognitive impairment, vascular dementia, senile dementia, schizophrenia, Alzheimer's disease (especially effective in those with the epsilon-4 apolipoprotein E genotype), head trauma, and ischemic stroke. A trial in patients with Alzheimer's disease indicated that CDP-choline (1,000 mg/day) is well tolerated and improves cognitive performance, cerebral blood perfusion, and the brain bioelectrical activity pattern. No side effects were noticed except for some mild gastrointestinal symptoms at higher doses. No abnormal blood chemistry or hematology values were found after the use of CDP-choline. Many patients and practitioners are unfamiliar with CDP-choline and may be tempted to use the more commonly prescribed phosphatidyl-choline. These two products cannot be used interchangeably. Phosphatidyl-choline is a glycerophospholipid that PLA2 can use to elicit its inflammatory effects. Individuals with elevations in PLA2 should refrain from supplements containing phosphatidyl-choline and use CDP-choline instead. 

The Organic Acids Test

The Organic Acids Test (OAT) is a comprehensive metabolic assessment of multiple systems in the body.  It is one of our best tools in determining the underlying causes of many chronic diseases.  The OAT test can be useful in the identification of intestinal yeast and bacteria, oxalates, abnormal neurotransmitters, mitochondrial markers, fatty acid oxidation, nutritional deficiencies, detoxification markers, and inborn errors of amino acid metabolism.   

Many of the markers on the OAT can help in the diagnosis of inflammation.  Some of these include markers for Candida and clostridia.  An overgrowth of these pathogenic microbes can lead to disruptions in the gut lining, which can cause inflammation and disrupt the absorption of nutrients.  Candida and clostridia can also produce many different chemical toxins that are absorbed through the intestines.  These toxins can produce confusion (brain fog), thyroid dysregulation, weight gain, acne, drowsiness, irritable bowel syndrome, and insomnia.  There are multiple markers for both Candida and Clostridia.  Some of the most common yeast markers are tartaric, arabinose, and carboxycitric.       

Picture3.png

The OAT also has more metabolic markers for clostridia than any other organic acid test on the market.  The OAT is able to identify overgrowth from multiple different strains of clostridia.  This is accomplished by looking at four different markers which include 4-hydroxyphenylacetic, HPHPA, 4-Cresol, and 3-indoleacetic.   These toxins produced by bacteria can lead to inflammation as well as inhibition of neurotransmitter metabolizing enzymes.

Picture4.png

One of the best markers for inflammation is the succinic acid marker.  Succinic acid is generated in mitochondria during the tricarboxylic acid cycle (TCA).  Succinic acid is also a signaling molecule which can change gene expression patterns by modulating epigenetic markers in the DNA.  Our data indicates that exposure to environmental toxins can cause inflammation, resulting in accumulation of succinic acid.

Picture5.png

Screen Shot 2017-10-16 at 7.55.45 AM.png

 This may be caused by the inhibition of succinate dehydrogenase, an important enzyme that functions in both the Krebs cycle and complex II of the electron transport chain. In the Krebs cycle, it converts succinate to fumarate. In the electron transport chain, it works with CoQ10 to transfer electrons into the complex III phase of the chain.  Our laboratory compared patients with high values several common environmental toxins on the GPL-TOX test and determined what their average succinic acid values were.  We found that patients with high vinyl chloride, xylene, heavy metals such as lead and mercury, DMP, DEP, and 2,4 D correlated with patients having elevated succinate values (see graph).

One additional marker on the Organic Acids Test for inflammation is quinolinic acid.  Quinolinic acid is a neuroactive metabolite of the kynurenic pathway.  Quinolinic acid is produced from tryptophan through a multi-stage process.  Buildup of quinolinic acid increases stimulation to NMDA glutamate receptors and inhibits the reuptake of glutamate by astrocytes leading to neurotoxicity.  Studies have shown that chronic exposure to quinolinic acid can lead to structural changes such as dendritic beading, microtubular disruption, and a decrease in organelles in neurons.  Quinolinic acid can also increase oxidative stress by inducing NOS activity.  Quinolinic acid further adds to inflammation by causing an increase of expression in the inflammatory response elements TNF-α and interleukin-6. 

Tests for Environmental Toxins

One of the leading causes of inflammation is environmental toxicants, which has been increasing every year since the 1960s.   This increase in toxic burden observed in our patients is one reason why we have put a focus on providing testing for many different sources of environmental toxicants.  We currently offer the GPL-TOX (Toxic Non-Metal Chemical Profile), Glyphosate Test, and metals tests (hair, urine, blood), and we just launched the GPL-MycoTOX Profile, the most sensitive test for mold toxins in the world.  If you have any questions about any of these tests, you may review previous blogs about them here or visit the individual tests information pages on our web site.  

Picture7.png

The IgG Food Allergy Test

Picture8.png

Testing for food sensitivity has been extremely helpful to many of our patient populations.  The symptoms of food sensitivity can include (but aren’t limited to) austim, ADD, depression, arthritis, fatigue, skin rashes, and gastrointestinal issues.  Our IgG Food Allergy Test is an invaluable tool to determine what role food plays in inflammation in the body. Immunoglobulin G (IgG) is the major antibody found in serum, and our test measures IgG subclasses 1-4.  IgG has a much longer half-life than the transitional IgE antibody.  Whereas IgE can cause acute reactions to food, IgG can cause inflammation that can lead to more chronic health issues.  These IgG reactions can be more subtle and people can live with them for years without realizing what is causing their discomfort.  The degree of severity can differ because of genetics or from exposure to different environmental toxins, which can predispose people to immune responses. 

At The Great Plains Laboratory we offer two different ways to submit samples for IgG food testing – serum and dried blood spot (DBS).  We have validated both of these tests against each other and they provide the same result.  Our test currently looks at 93 different foods along with testing for Candida antibodies. 

Conclusion

At The Great Plains Laboratory, we are very focused on helping patients solve their chronic health problems.  Research shows that inflammation plays a role in most chronic issues.  This is the reason why we have developed so many tests to help pinpoint the root causes of inflammation and to help figure out the best method of treatment.  We hope that we can help as many people in the future live better and longer lives.

 

 

Detoxifying Your Body - Water Filtration 101

Jessica Bonovich, RN, BSN

Hello, and welcome back to the GPL Blog.  Today we are talking about water filtration, which is a subject a lot of clients have asked about since we introduced our GPL-TOX test.  What we have seen through our studies, and those of other labs is that many of the toxins assessed by GPL-TOX have been found in many water supplies.  Any treatment plan needs to encompass a plan to prevent re-exposure. 

I recently reached out to over 12 water filter distributors and manufacturers to learn about the best filtration system for removing volatile organic compounds (VOC’s) from water and why. I was very transparent about the needs of our patients and the company I work for. I also reviewed information provided by The Environmental Working Group, who offers this Water Filter Buying Guide.  In addition, I contacted the Industrial Wastewater Management Center, the Department of Natural Resources, NSF Public Health and Safety Organization, and the Environmental Protection Agency.  Here is what I learned:

Carbon Block Filters

Carbon block is the commercially available standard for removing VOC’s. These very small compounds adhere to a surface of carbon (a process called adsorption) but will not be removed through reverse osmosis, ceramic, deionization, ozone, or ultraviolet light filtration. Factors that affect adsorption include the concentration of the compound, surface area, and the contact time between the water and the carbon. Of these factors, filters control the latter two.

The surface area of the carbon refers to the size of the pores in the carbon filter. This is where the “block” comes in. The filtration companies pack the carbons in very tightly which creates a very small pore size. The smaller the pore size the greater the chance of catching very small molecules like the VOC’s. The pore size of carbon block filters is generally measured in microns and ranges from 0.5 up to 1 micron.  This is sometimes also called submicron filtration. These tiny pores also remove lots of other small molecules like bacteria and particulate matter. Our main concern here is the removal of VOC’s because the carbon is the only filtration that will eliminate these compounds. Many other kinds of filters are available to remove the other materials. It’s a bonus but not a big selling point.

The contact time equates to how much water can contact the filter over a given period and directly affects the gallons per minute (gpm) of filtration. Companies intentionally build in methods to restrict the water flow to increase the amount of contact time the water has with the filter. The water restriction lowers the gpm which can slow the water flow. Consumers tend to want higher gpm for greater water pressure but this can affect the removal of contaminants.  The size of the filter also influences the removal. So, if you want high water flow (gpm) you need a larger filter that will handle the larger volume. This will cost you a bit more. If budget is your main concern, low gpm is the priority. Whole house filtration systems are not as effective at removing VOC’s because they are geared toward optimizing the water flow, in other words, fast filtration. The size of the filter needed to overcome the pressure drop on whole house filters is cost prohibitive for most people. Several companies do make carbon block filters for your shower head which is a nice option for reducing the VOC contaminants in your shower water. The under-the-sink and counter top units are often called point of use (POU) filters. The industry standard for good carbon block filters is between 0.5 and 1 gpm. The filter size that is needed to accommodate the larger gpm and still remove VOC’s can be deduced by looking at the performance data sheets that companies provide. This is what people should focus on to determine how robust the filter really is.

Filter Specifications

Understanding filter specifications can be a learning curve in itself. Companies will have third parties test the amount of contaminant coming in (called influent) and the amount going out (called effluent) through a company called NSF. The data sheets do not report the actual effluent, but instead report the “maximum permissible product water concentration” established by the EPA. This number will be the same on all data sheets. This testing is an important factor because we know that the concentration of the compound influences the ability of the filter to adsorb. NSF spikes water samples with a known amount of a compound and then measures the amount that is still in the specimen after filtration. These reports vary considerably and range from very well-organized to quite confusing. Some performance data sheets list these figures as a chart, while others use graphs. The only real difference is the percent reduction. This is the amount that was eliminated during the testing. I have asked multiple companies why they do not provide the actual effluent data and even contacted NSF about this. No one has been able to tell me why they don’t provide the raw data.

Filter Housing Options

Choosing the housing for your filter is the final step. Most of the companies use stainless steel, aluminum, or polypropylene plastic housing. Polypropylene is considered nontoxic by the Environmental Working Group. However, it can be oxidized when exposed to stress like heat and UV.  On top of this, many of our patients have developed severe chemical sensitivity. Once this acute phase has established itself, it can be difficult to predict what the patient will react to. I recommend the stainless steel option to remove any concern about plastic toxicity. Once your water has been filtered, do not store water in a container for more than 24 hours. Without chlorine, the water becomes a target for microbes to take up residency. 

Testing Your Water

Most filtration companies recommend that you have your water tested prior to getting a filtration system so you know exactly what you need. I have focused on single stage filtration designed to remove VOC contaminants. If you have heavy metals or bacterial contamination, you will need a multistage filter that will remove all the other contaminants. To find a laboratory in your area that can test your water, the EPA suggests that you start with your local municipality. I contacted the local water department here in Johnson County, KS to test this theory and they provided me the names of three local laboratories that can test water for contaminants.  Only one of these companies responded to my request and they offered to test for 29 VOC’s for $140.

An acceptable level of contamination has not been established for every chemical compound. The VOC’s that do have a limit are listed on pages 257-533 of this document.  According to the most current information available on the EPA website, municipal water suppliers must test the water for these VOC’s four times per year. If there are no contaminants reported for three years, the municipality can test just once per year. Municipalities can go a step further and apply for a waiver that exempts them from testing any VOC’s for up to six years. If a contamination is found, quarterly monitoring is required. If the municipality does not comply with this, there are no stated penalties or further requirements, which is a bit disconcerting. If you find that your water exceeds any of these standards, you should report this contamination to your state EPA office.  

Final Thoughts

The company (and person) that was the most helpful to me by far on this journey was Ron at Water2drink.com. All of their filter performance sheets are disclosed here. Individual requirements will vary based on price and available space. If you want my personal opinion for a good filter to remove VOC contaminants, this is a great place to start.

Your Body’s Detoxification Pathways

Welcome back to the GPL-BLOG.  Over the past several weeks we’ve been discussing a lot of the environmental toxins that everyone is exposed to on a daily basis.  These toxins must be processed and detoxified.  Most of this is done in the liver through several different processes that include Cytochrome P450 (P450) biotransformation, glutathione conjugation, enzyme hydrolyzing, sulfation, and glucuronidation.

Detoxification is often referred to as a two stage process (phase 1 and phase 2) of metabolism (Figure 1).  Phase 1 metabolism involves the reduction or hydrolysis of the compound (usually caused by the addition of an oxygen molecule).  The addition of oxygen to a compound is referred to as oxidation.  This process is usually performed by the P450 enzymes.

Figure 1

The P450s are a family of enzymes that are found in numerous tissues throughout the body. However, a majority of these are found in the liver.  The P450s are important for the detoxification of many foreign substances, including environmental toxicants and medications.  The P450s are also important in controlling the levels of different molecules produced in the body such as the synthesis and breakdown of hormones, steroids, and multiple other molecules. 

In humans, 58 different P450s have been discovered.  However, only a subset of these is involved in the degradation of xenobiotics (chemicals that come from outside the body).  These enzymes have different substrates, which are determined by the activity pocket of each enzyme.   In regards to detoxification the most important P450s are Cyp1A2, Cyp2A6, Cyp2C9, Cyp2C19, Cyp2D6, Cyp2E1, and Cyp3A4.  Besides detoxification, these enzymes metabolize a majority of medications (figure 2).

Here are some important detoxification enzymes:

Figure 2

Cyp1A2 is important for the metabolism of polycyclic aromatic hydrocarbons (PAHs), which are found in cigarette smoke.  Other substrates include medications, aflatoxin B1, caffeine, and acetaminophen.  The major polymorphism is Cyp1A2*1K, which results in a decrease of activity.

Cyp2A6 is involved in the metabolism of nicotine.  Cyp2A6 is also involved in the metabolism of medications.  The major polymorphic alleles are Cyp2A6*4 and Cyp2A6*9 (which can have between 35% -70% activity depending on if you have one or two polymorphic copies). 

Cyp2C9 is involved with the metabolism of a large number of medications including NSAIDs, warfarin, and tamoxifen.  There are multiple polymorphisms that affect activity of the enzyme. 

Cyp2C19 is involved with the metabolism of multiple medications.  The most common are diazepam, omeprazole, and sertraline.  Cyp2c19 also metabolizes progesterone.   There are two major variants that result in loss of activity.  These are Cyp2C19*2 and Cyp2C19*3.

Cyp2D6 is involved with the metabolism of about 20% of drugs on the market.  It also metabolizes serotonin and neurosteroids.  There are five different polymorphisms that can lead to decreased activity.  Some of the classes of drugs that are metabolized by Cyp2D6 are antidepressants, SSRIs, opioids, and antipsychotics. 

Cyp2E1 is involved with the detoxification of many industrial pollutants, as well as carcinogens.  Cyp2e1 also metabolizes ethanol to acetaldehyde and acetate.  Cyp2e1 is also responsible for bioactivating a number of carcinogens, including cigarette smoke. 

Cyp3A4 is responsible for metabolizing more compounds than most other P450s.  It is responsible for metabolizing sex hormones, caffeine, statins, SSRIs, antifungals, antidepressants, and many other medications.  Some antibiotics can negatively affect its activity. Also, grapefruit and pomegranate juice have been shown to be potent inhibitors. 

Sulfur transferase is a phase 2 enzyme that adds sulfur groups to compounds in order to make them more water soluble and less reactive.  This process is used on a wide variety of toxic molecules including phenols, amines, acetaminophen, and food dyes.  Many chemicals that are able to become airborne are sulfated.  Patients with autism have been found to have impaired sulfation ability, which will make these individuals more sensitive to toxins.

Glutathione transferase is a phase 2 enzyme that catalyzes the conjugation of glutathione to substrates.  The addition of glutathione to toxins prevents these compounds from interacting with proteins in the body and allows them to be excreted via urine or bile.  There are a wide variety of compounds that are conjugated with glutathione.  A partial list includes pesticides, herbicides, carcinogens, acetaminophen, and mycotoxins.   

Glucuronosyltransferase (UGT) is another phase 2 enzyme that is responsible for the glucuronidation of many different toxic chemicals.  This process involves the addition of a glucuronosyl group to substrate molecules making them more polar and more easily excreted by the kidneys. 

Paraoxonase 1 (PON1) is an enzyme that is able to perform paraoxonase activity on substrates.  This enzyme is able to hydroylse and detoxify many different types of organophophate molecules.  PON1 is one of the major pathways that protects people from these types of compounds.  Mutations to PON1 could lead someone to be more sensitive to pesticides.  Infants do not have a lot of PON1 activity.  PON1 becomes active between birth and seven years of age. 

These are the major pathways that you should be aware of when you are thinking about detoxification.  Please see Table 1 to help you understand which pathway is mostly responsible for detoxifying these common toxicants.  Also see Figure 1 to help you understand what you can do to help support type 1 and type 2 detoxification pathways.  Detoxification of compounds by glutathione can be assisted by the supplementation of additional glutathione.  Next week I will discuss some additional methods to help with detoxification.  

Email gplblog@gpl4u.com if you have any questions about this blog post.