Publish Date

April 25, 2016

Welcome back to the Mosaic Diagnostics blog.  I am really excited to be entering our second month of providing what we hope is useful information to the community.  Last month I discussed some of the uses of the GPL-SNP1000 test.  This month we will be discussing environmental toxicants.  Some of the topics covered will be the most prevalent toxicants in our environment, the best way to test for them, and relevant case studies. In the last blog this month I’ll cover some ways to detoxify the body and what tests can determine how well a patient is able to detoxify.

The Mosaic Diagnostics introduced GPL-TOX (our toxic organic chemical profile) last July that measures 168 different toxic chemicals.  Our goal was to provide a test that measured as many chemicals as possible for a reasonable price.   These compounds fall into the categories of phthalates, benzene, pyrethrin insecticides, xylenes, styrene, fuel additives, 2,4-Dicholrophenoxyacetic (2,4-D), and organophosphate pesticides. Once a person has been exposed, the chemicals undergo several metabolic changes in the process of elimination and detoxification.  We measure the end products in the urine to determine how much chemical exposure has taken place.  Last October we introduced a test for the toxic compound glyphosate which is the world’s most widely produced herbicide. You have probably heard of it already, as it is the active ingredient in the broad-spectrum herbicide Roundup TM.  

Here at MosaicDX, our scientists are continually working to improve our tests.  Later this month we are introducing eight new analytes to our GPL-TOX test for no additional cost. The new analytes are acrylamide, acrylonitrile, diphenyl phosphate (fire retardant metabolite), perchlorate, butadiene metabolite (carcinogenic component of rubber), dimethyl thiophosphate (pesticide metabolite),  propylene oxideacid and bromopropane.  Even before our recent update, GPL-TOX was one of the most comprehensive toxic chemical tests available.  Next week, I will discuss how all of these new analytes can affect a patient’s health.   This week I am going to provide more details about the analysis and review  a few of our current toxic analytes. I am also going to provide a few examples of case studies.   

To better understand the relevance of GPL-TOX, I’d like to explain the percentiles on our report.  The CDC issues a report of the exposure of many different chemicals to the US population.  Our percentiles are pulled from these reports.  If you are in the 95th percentile, then that means that only 5 percent of the population would have a higher value than yourself.  Since we do not know what the safe amounts are for many of these compounds we recommend reducing levels as much as possible. 

Every year over 1,000 million tons of organophosphates are used in the agricultural industry and in our home gardens.  This is a problem that is affecting us all, because even if we eat exclusively organic food, there is evidence that many of these organophosphates have contaminated the water supply.  The evidence of this has been centered on the increasing prevalence of depression, ADHD, pervasive developmental disorder, and birth defects, linking these toxins to these disorders. GPL-TOX looks at two metabolites related to organophosphates, Dimethylphosphate (DMP) and diethylphoshate (DEP).  Together these two metabolites allow us to track over 151 different organophosphates through urine, including nine of the ten most commonly used organophosphates. 

Another marker that makes GPL-TOX useful is monoethylphlate (MEP), which is a metabolite of phthalate exposure.  Many of us know about the pervasiveness of these compounds, which seem to be found in so many common products.  These products include lubricants, paints, perfumes, children’s toys, gels, and pesticides.  We are seeing many of our sickest patients possessing high values of phthalates.  Some of the symptoms we are seeing are fatigue, depression, ADHD, and arthritis.   

I want to share a couple of case studies to help illustrate what we are seeing.  The first is a painter with arthritis, fatigue, and depression.  The MEP on this patient’s GPL-TOX report came back at 19,110 (see Figure 1), which was ten-fold higher than our 95th percentile.  We recommended a detoxification program to this patient, which many of our patients are using with great success.  I will discuss different means of detoxification in my blog on May 30th, so check back for that.

Figure 1
Figure 1

Here is one more interesting case study.  We have all heard about fracking (the process of injecting liquid chemicals at high pressure far underground, in order extract natural gas or oil) and some of the resulting damage it does to the environment and our water supplies. The results below are from an extremely autistic patient with PANDAS who lives near fracking wells in the summer (see figures 2-4).  This sample was taken months after he was exposed.

Figure 2
Figure 2
Figure 3
Figure 3
Figure 4
Figure 4

These results are pretty alarming.  Obviously not everyone has high values like this, but even if we don’t live near fracking sites, we are exposed to toxic chemicals in our environment more and more every day.  If you do come up high for one or more of these chemicals, there is hope.  On May 30th I will discuss potential treatment options to detoxify the body and recommendations to avoid future exposures.  After treatment and avoidance, I recommend running the test again to make sure that you have sufficiently decreased the toxicants. 

Next week I will talk about the new analytes for the GPL-TOX test and why measuring these particular analytes is important.  In the meantime, stay vigilant about the many chemicals you and your family may be exposed to on a regular basis in every area of your home, from the food you eat and the water you drink, to all your household products.

Headshot of William Shaw, PhD - MosaicDX

About the Author

William Shaw, PhD

William Shaw, PhD, is board certified in the fields of clinical chemistry and toxicology by the American Board of Clinical Chemistry. Before he founded The Great Plains Laboratory, Inc., Dr. Shaw worked for the Centers for Disease Control and Prevention (CDC), Children’s Mercy Hospital, University of Missouri at Kansas City School of Medicine, and Smith Kline Laboratories.