The Importance of Genetic Testing in Mental Health

Matthew Pratt-Hyatt, PhD
Associate Laboratory Director, The Great Plains Laboratory, Inc.

Personalized medicine has been called the future of medicine since the inception of the Human
Genome Project (HGP) in the early 90s. The dream of personalized healthcare is to use genetic
testing to understand a patient’s predisposition for developing different conditions, and then
undergo molecular diagnostic tests to determine how the environment is interacting with these genes. Genetic testing has become a much more economical tool with the advent of Next Generation Sequencing (NGS) technology. Even though traditional medicine has mostly
followed the philosophy that one size fits most, functional medicine says that each person is
unique and deserves unique care. That is why The Great Plains Laboratory, Inc. has developed
our new genetic test, GPL‐SNP1000, which now allows us to have a more complete picture of what contributes to a patient’s health status, including mental health.

GPL‐SNP1000 looks for mutations in over 140 genes and over 1,000 different SNPs (singlenucleotide polymorphisms) and is a very useful tool for everyone working in the fields of functional and integrative medicine. GPL‐SNP1000 looks at genes and SNPs in nine specific
pathways that we believe are most important to integrative medicine. Three of the nine gene
groups we analyze ‐‐ the mental health group, the autism risk group, and the drug metabolism
group are particularly invaluable for those working in the mental health field, helping guide
practitioners in both diagnoses and more personalized treatment.

For mental health, we analyze 88 SNPs across 14 different genes. The mental health genes are
MTR. Some of the important mutations in these genes are:

COMT: Catechol‐O‐methltransferase (COMT) is present in the body in two different
forms. The short form is called soluble catechol‐O‐methyltransferase (S‐COMT). The
longer form is called membrane‐bound catechol‐O‐methyltransferase (MB‐COMT). MBCOMT is mainly present in the nerves of the brain, while S‐COMT is located in the liver, kidney, and blood. In the brain, MB‐COMT is responsible for degrading
neurotransmitters called catecholamines, which include dopamine, epinephrine, and
norepinephrine. GPL‐SNP1000 analyzes six different SNPs for COMT. Conditions
associated with these mutations include OCD, depression, and schizophrenia.

MAOA: Monoamine oxidase A is important for the metabolism of biogenic amines such
as the neurotransmitters dopamine, norepinephrine, and serotonin. Patients with
mutations in this gene can have Norrie disease (an eye disease that causes blindness in
males at birth or soon after), severe intellectual disability, autistic behaviors, and
seizures. Mutations to this gene have also been linked to depression, borderline
personality disorder, and bipolar disorder.

The autism risk genes are another group that would be important to practitioners of mental
health and integrative medicine, especially those who focus on pediatrics. We looked at many
different studies to determine which mutations are more commonly found in autistic patients,
but not found in the neurotypical, non‐autistic public. We selected 252 SNPs in 33 genes that
cover many different pathways including glucose metabolism, ion and calcium channels, DNA
transcription regulation, and autoimmune system genes. If a patient has one of these
mutations, it does not mean that he/she will develop Autism Spectrum Disorder, but their risk
for developing ASD may be higher than that of the general public.

The other group of genes that could be of great use in mental health is the cytochrome P450
drug metabolizers. Even though many functional practitioners are trying to move away from
using pharmaceuticals, antidepressants, neuroleptics, and beta‐blockers are still some of the
most commonly used medications. The P450 enzymes metabolize 75% of all medications.
However, many of these enzymes have possible mutations that could affect their efficacy and
safety. Over 100,000 hospitalizations occur annually because of adverse drug reactions. GPLSNP1000
looks at 241 SNPs covering all of the major mutations that could cause a decrease in
drug efficacy and safety. A recent study indicated that genetic tests could reduce the adverse
drug reactions for some medications by as much as 66%.

The new genetic test from The Great Plains Laboratory, Inc. will be a great tool for all healthcare practitioners, but especially those practicing in the mental health field. We hope that you’ll make great use of it to deliver more personalized diagnoses and treatments for your patients. For more information about GPL‐SNP1000, please visit our website or contact us and ask to speak with one of our lab scientists or consultants.


1. Biello D, Harmon K. Tools for Life. Sci Am. 2010;303:17‐18.
2. Marian AJ. Sequencing your genome: what does it mean? Methodist Debakey
Cardiovasc J. 2014;10(1):3‐6.
3. McCarthy DJ, Humburg P, Kanapin A, et al. Choice of transcripts and software has a large
effect on variant annotation. Genome Med. 2014;6(3):26.
4. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain‐terminating inhibitors. Proc
Natl Acad Sci U S A. 1977;74(12):5463‐5467.
5. Livak KJ, Flood SJ, Marmaro J, Giusti W, Deetz K. Oligonucleotides with fluorescent dyes
at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic
acid hybridization. PCR Methods Appl. 1995;4(6):357‐362.
6. Shi MM, Myrand SP, Bleavins MR, de la Iglesia FA. High throughput genotyping for the
detection of a single nucleotide polymorphism in NAD(P)H quinone oxidoreductase (DT
diaphorase) using TaqMan probes. Mol Pathol. 1999;52(5):295‐299.
7. Lin B, Wang J, Cheng Y. Recent Patents and Advances in the Next‐Generation
Sequencing Technologies. Recent Pat Biomed Eng. 2008;2008(1):60‐67.
8. Wiemels JL, Smith RN, Taylor GM, et al. Methylenetetrahydrofolate reductase (MTHFR)
polymorphisms and risk of molecularly defined subtypes of childhood acute leukemia. Proc Natl
Acad Sci U S A. 2001;98(7):4004‐4009.
9. Deloughery TG, Evans A, Sadeghi A, et al. Common mutation in
methylenetetrahydrofolate reductase. Correlation with homocysteine metabolism and lateonset
vascular disease. Circulation. 1996;94(12):3074‐3078.
10. Craddock N, Owen MJ, O'Donovan MC. The catechol‐O‐methyl transferase (COMT) gene
as a candidate for psychiatric phenotypes: evidence and lessons. Mol Psychiatry.
11. Guengerich FP. Mechanisms of drug toxicity and relevance to pharmaceutical
development. Drug Metab Pharmacokinet. 2011;26(1):3‐14.
12. Ingelman‐Sundberg M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6):
clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J.
13. Ingelman‐Sundberg M. Genetic susceptibility to adverse effects of drugs and
environmental toxicants. The role of the CYP family of enzymes. Mutat Res. 2001;482(1‐2):11‐
14. Kalra BS. Cytochrome P450 enzyme isoforms and their therapeutic implications: an
update. Indian J Med Sci. 2007;61(2):102‐116.
15. Rutter M. Incidence of autism spectrum disorders: changes over time and their
meaning. Acta Paediatr. 2005;94(1):2‐15.
16. Sanders SJ, He X, Willsey AJ, et al. Insights into Autism Spectrum Disorder Genomic
Architecture and Biology from 71 Risk Loci. Neuron. 2015;87(6):1215‐1233.
17. Iossifov I, O'Roak BJ, Sanders SJ, et al. The contribution of de novo coding mutations to
autism spectrum disorder. Nature. 2014;515(7526):216‐221.
18. De Rubeis S, He X, Goldberg AP, et al. Synaptic, transcriptional and chromatin genes
disrupted in autism. Nature. 2014;515(7526):209‐215.
19. Hall BM, Walsh JC, Horvath JS, Lytton DG. Peripheral neuropathy complicating primary
hyperoxaluria. J Neurol Sci. 1976;29(2‐4):343‐349.
20. Poore RE, Hurst CH, Assimos DG, Holmes RP. Pathways of hepatic oxalate synthesis and
their regulation. Am J Physiol. 1997;272(1 Pt 1):C289‐294.